If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1002=16t^2
We move all terms to the left:
1002-(16t^2)=0
a = -16; b = 0; c = +1002;
Δ = b2-4ac
Δ = 02-4·(-16)·1002
Δ = 64128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64128}=\sqrt{64*1002}=\sqrt{64}*\sqrt{1002}=8\sqrt{1002}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1002}}{2*-16}=\frac{0-8\sqrt{1002}}{-32} =-\frac{8\sqrt{1002}}{-32} =-\frac{\sqrt{1002}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1002}}{2*-16}=\frac{0+8\sqrt{1002}}{-32} =\frac{8\sqrt{1002}}{-32} =\frac{\sqrt{1002}}{-4} $
| 7(1=c)=6(c-6) | | -3x-1/2=11/2 | | 5x(4x+12)=180 | | 6x+84x+2=180 | | 4^x=24 | | x/2+x/5=21/5 | | 4(-6+8n)+8=176 | | 1x-1(12-x)=38 | | 16-3p=2/5p5 | | 2+0.5(4a+8)=9-2a | | -3x5=1 | | y=2000(2)^2020 | | X+0.10x=33,500 | | 10^(n+6)=45 | | 10^n+6=45 | | -8+x/18=-9 | | 2a-9=a+12 | | 27=9+s | | y=6.72(2)^5 | | 7b-1/5=6b-7/5 | | 36-x=2(x=1) | | 7x=10=5x+2 | | -4(y-2)=9y-12 | | |3x+1|=|7x+3| | | 6x-3x=2x+10 | | 9+m/8=11 | | 3u+46=7(u+8) | | 6x-7x-20=100-7x=4 | | (13x+1)/4=-3 | | 7k-(-3k)= | | Y=4800–180x | | 9=v/5+9 |